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Algorithm for Tracking, Nowcasting & Data Mining 

 Segmentation + Motion Estimation 
 Segmentation --> identifying parts (“segments”) of an image 

 Here, the parts to be identified are storm cells 

 segmotion consists of image processing steps for: 
 Identifying cells 

 Estimating motion 

 Associating cells across time 

 Extracting cell properties 

 Advecting grids based on motion field 

 segmotion can be applied to any uniform spatial grid 
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Vector quantization via K-Means clustering [1] 
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 Quantize the image into bands using K-Means 
 “Vector” quantization because pixel “value” could be many channels 

 Like contouring based on a cost function (pixel value & discontiguity) 
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Enhanced Watershed Algorithm [2] 
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 Starting at a maximum, “flood” image 
 Until specific size threshold is met:  resulting “basin” is a storm cell  

 Multiple (typically 3) size thresholds to create a multiscale algorithm 



lakshman@ou.edu 

Storm Cell Identification: Characteristics 
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 Cells grow until they reach a specific size threshold 

 Cells are local maxima (not based on a global threshold) 

 Optional: cells combined to reach size threshold 
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Cluster-to-image cross correlation [1] 
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 Pixels in each cluster overlaid on previous image and 
shifted 
 The mean absolute error (MAE) is computed for each pixel shift 

 Lowest MAE -> motion vector at cluster centroid 

 Motion vectors objectively analyzed 
 Forms a field of motion vectors u(x,y) 

 Field smoothed over time using Kalman filters 
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Motion Estimation: Characteristics 
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 Because of interpolation, motion field covers most places 
 Optionally, can default to model wind field far away from storms 

 The field is smooth in space and time 
 Not tied too closely to storm centroids 

 Storm cells do cause local perturbation in field 
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Nowcasting Uses Only the Motion Vectors 
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 No need to cluster predictand or track individual cells 
 Nowcast of VIL shown 
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Unique matches; size-based radius; longevity; cost [4] 
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 Project cells identified at tn-1 to expected location at tn 

 Sort cells at tn-1 by track length so that longer-lived tracks 
are considered first 

 For each projected centroid, find all centroids that are 
within sqrt(A/pi) kms of centroid where A is area of storm 

 If unique, then associate the two storms 

 Repeat until no changes 

 Resolve ties using cost 

fn. based on size, intensity 
or 
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Geometric, spatial and temporal attributes [3] 
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 Geometric: 
 Number of pixels -> area of cell 

 Fit each cluster to an ellipse: estimate orientation and aspect ratio 

 Spatial: remap other spatial grids (model, radar, etc.) 
 Find pixel values on remapped grids 

 Compute scalar statistics (min, max, count, etc.) within each cell 

 Temporal can be done in one of two ways: 
 Using association of cells: find change in spatial/geometric property 

 Assumes no split/merge 

 Project pixels backward using motion estimate: compute scalar statistics on 
older image 

 Assumes no growth/decay 
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Identify and track cells on infrared images 
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Coarsest scale shown because 1-3 hr forecasts desired. 

Not just a simple thresholding scheme 
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Plot centroid locations along a track 
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Rabin and Whitaker, 2009 
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Associate model parameters with identified cells 
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Rabin and Whitaker, 2009 
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Create 3-hr nowcasts of precipitation 
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NIMROD 3-hr precip 
accumulation 

Rainfall Potential using 
Hydroestimator and 
advection on SEVIRI 

data 

Kuligowski et. al, 2009 
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Create azimuthal shear layer product 
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Velocity 

Azimuthal Shear 

Maximum Azimuthal 
Shear Below 3 km 
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Tune based on duration, mismatches and jumps 
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3x3 median filter; 
10 km2; 0.004 s-1 ; 0.002 s-1 

3x3 Erosion+Dilation filter; 
6 km2; 0.006 s-1 ; 0.001 s-1 

Burnett et. al, 2010 
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Compare different options to track total lightning 
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 Kuhlman et. al [Southern Thunder Workshop 2009] compared tracking 
cells on VILMA to tracking cells on Reflectivity at -10C and concluded: 

 Both Lightning Density and Refl. @ -10 C provide consistent tracks 
for storm clusters / cells (and perform better than tracks on 
Composite Reflectivity ) 

 At smallest scales:  Lightning Density provides longer, linear tracks 
than Ref.  

 Reverses at larger scales.  Regions lightning tend to not be as 
consistent across large storm complexes. 
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Case 2:  Multicell storms / MCS 
4 March 2004 

VILMA Reflectivity @ -10 C 

Kuhlman et. al, 2009 
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Goal: Predict probability of C-G lightning 

 Form training data from radar reflectivity images 
 Find clusters (storms) in radar reflectivity image 

 For each cluster, compute properties 

 Such as reflectivity at -10C, VIL, current lightning density, etc. 

 Reverse advect lightning density from 30-minutes later 

 This is what an ideal algorithm will forecast 

 Threshold at zero to yield yes/no CG lightning field 

 Train neural network 
 Inputs: radar attributes of storms, 

 Target output: reverse-advected CG density 

 Data:  all data from CONUS for 12 days (1 day per month) 
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Algorithm in Real-time 
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 Find probability that storm will produce lightning: 
 Find clusters (storms) in radar reflectivity image 

 For each cluster, compute properties 

 Such as reflectivity at -10C, VIL, current lightning density, etc. 

 Present storm attributes to neural network 

  Find motion estimate from radar images 
 Advect NN output forward by 30 minutes 
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Algorithm Inputs, Output & Verification 

26 

Actual CG 
at t0 

Reflectivity 
Composite  

Reflectivity 
at -10C 

Clusters in 
Reflectivity 
Composite 

Predicted  
CG for t+30 
RED => 90% 
GRN =>70% 

Actual 
CG at t+30 

Predicted 
Initiation 



lakshman@ou.edu 

More skill than just plain advection 
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Tuning vector quantization (-d) 
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 The “K” in K-means is set by the data increment 
 Large increments result in fatter bands 

 Size of identified clusters will jump around more (addition/removal of 
bands to meet size threshold) 

 Subsequent processing is faster 

 Limiting case: single, global threshold 

 Smaller increments result in thinner bands 
 Size of identified clusters more consistent 

 Subsequent processing is slower 

 Extremely local maxima 

 The minimum value determines probability of detection 
 Local maxima less intense than the minimum will not be identified 
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Tuning watershed transform (-d,-p) 
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 The watershed transform is driven from maximum until 
size threshold is reached up to a maximum depth 
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Tuning motion estimation (-O) 
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 Motion estimates are more robust if movement is on the 
order of several pixels 
 If time elapsed is too short, may get zero motion 

 If time elapsed is too long, storm evolution may cause “flat” cross-
correlation function 

 Finding peaks of flat functions is error-prone! 
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Specifying attributes to extract (-X) 
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 Attributes should fall inside the cluster boundary 
 C-G lightning in anvil won’t be picked up if only cores are identified 
 May need to smooth/dilate spatial fields before attribute extraction 

 Should consider what statistic to extract 
 Average VIL? 
  Maximum VIL? 
 Area with VIL > 20? 
 Fraction of area with VIL > 20? 

 Should choose method of computing temporal properties 
 Maximum hail?  Project clusters backward 

 Hail tends to be in core of storm, so storm growth/decay not problem 

 Maximum shear? Use cell association 
 Tends to be at extremity of core 
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Preprocessing (-k) affects everything 
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 The degree of pre-smoothing has tremendous impact 
 Affects scale of cells that can be found 

 More smoothing -> less cells, larger cells only 

 Less smoothing -> smaller cells, more time to process image 

 Affects quality of cross-correlation and hence motion estimates 

 More smoothing -> flatter cross-correlation function, harder to find best 
match between images 
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Evaluate advected field using motion estimate [1] 
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 Use motion estimate to project entire field forward 

 Compare with actual observed field at the later time 

 

 

 

 

 

 Caveat: much of the error is due to storm evolution 
 But can still ensure that speed/direction are reasonable 
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Evaluate tracks on mismatches, jumps & duration 
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 Better cell tracks: 
 Exhibit less variability in “consistent” properties such as VIL 

 Are more linear 

 Are longer 

 

 

 

 

 

 

 Can use these criteria to choose best parameters for 
identification and tracking algorithm 
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http://www.wdssii.org/ 
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 w2segmotionll Multiscale cell identification and tracking: this is the program 
that much of this talk refers to. 

w2advectorll Uses the motion estimates produced by w2segmotionll (or any 
other motion estimate, such as that from a model) to project a 
spatial field forward 

w2scoreforecast The program used to evaluate a motion field. This is how the 
MAE and CSI charts were created 

w2scoretrack The program used to evaluate a cell track. This is how the 
mismatch, jump and duration bar plots were created. 
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 Each pixel is moved among every available cluster and 
the cost function E(k) for cluster k for pixel (x,y) is 
computed as 

 

Mathematical Description: Clustering 
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Distance in 
measurement space 
(how similar are 
they?) 

Discontiguity 
measure (how  
physically close 
are they?) 

Weight of distance vs. 
discontiguity (0≤λ≤1) 

Mean intensity value 
for cluster k 

Pixel intensity 
value 

Number of pixels neighboring (x,y) 
that do NOT belong to cluster k 

Courtesy: Bob Kuligowski, NESDIS 
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Cluster-to-image cross correlation [1] 
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 The pixels in each cluster are overlaid on the previous image and 
shifted, and the mean absolute error (MAE) is computed for each pixel 
shift: 
 
 
 
 
 

 
 
 
 
 

 To reduce noise, the centroid of the offsets with MAE values within 
20% of the minimum is used as the basis for the motion vector. 
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Intensity of pixel 
(x,y) at previous 
time 

Intensity of pixel 
(x,y) at current time 

Summation over all pixels 
in cluster k 

Number of pixels in 
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Courtesy: Bob Kuligowski, NESDIS 
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Interpolate spatially and temporally 
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 After computing the motion vectors for each cluster 
(which are assigned to its centroid, a field of motion 
vectors u(x,y) is created via interpolation: 

 

 

 

 

 

 The motion vectors are smoothed over time using a 
Kalman filter (constant-acceleration model) 
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Resolve “ties” using cost function 
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 Define a cost function to associate candidate cell i at tn 

and cell j projected forward from tn-1 as: 

 

 

 

 

 For each unassociated centroid at tn , associate the cell for 
which the cost function is minimum or call it a new cell 

Location (x,y) of centroid Area of 
cluster 

Peak value of 
cluster 

Max 

Mag-
nitude 
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